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1 Introduction

Background. Since the seminal paper of Brock and Mirman (1972), presenting a stochastic

neoclassical one-sector growth model, the dynamic stochastic general equilibrium (DSGE)

models have become the workhorse in dynamic macroeconomic theory. This benchmark

economy gave rise to the development of advanced tools for capturing the main features of

aggregate fluctuations and for policy recommendations.

The literature on DSGE models, however, has been surprisingly quiet on the effects of

large economic shocks such as natural disasters and financial and/or economic crises. Rare

events in the form of natural disasters or technological improvements play an important role

in the consumption-saving decision of economic agents: Barro (2006, 2009) finds that rare dis-

asters are sufficiently frequent to have substantial asset pricing and welfare implications; rare

events in the form of technological changes are found in quality ladder and matching mod-

els (Grossman and Helpman, 1991; Aghion and Howitt, 1992; Lentz and Mortensen, 2008),

models explaining both growth and economic fluctuations (Wälde, 1999, 2005), and models

of investment under uncertainty with regime shifts (Guo, Miao and Morellec, 2005).

In the field of macroeconometrics, Posch (2009b) finds empirical evidence for Poisson

jumps in US macro data estimating continuous-time DSGE models.1 One caveat of non-linear

and/or non-normal models usually is the lack of analytical solutions. This is unfortunate,

so the literature is making a huge effort in developing powerful computational methods,

extending the perturbation and projection procedures (Judd, 1992; Judd and Guu, 1997).2

Although most numerical methods generally are locally highly accurate, the effects of large

economic shocks, such as rare disasters on approximation errors, are largely unexplored.

The open question. How does the presence of rare events affect the optimal decisions in

dynamic general equilibrium economies? It seems important to understand the implications

of the simple awareness of the possibility for large economic shocks on optimal decisions, such

as consumption or leisure, for the aggregate dynamics in DSGE models. In particular, we

need to relax parametric restrictions which give rise to closed-form solutions. Since current

computational methods largely consider uncertainty as emerging from small shocks, it does

not come as a surprise that no in-depth analysis has been provided to date.

Our message. This paper proposes a simple and powerful method for determining the

transition process in continuous-time DSGE models under Poisson uncertainty numerically.

1Related studies find that non-linearities and/or non-normalities are important features of US aggregate
data (cf. Fernández-Villaverde and Rubio-Ramı́rez, 2007; Justiniano and Primiceri, 2008).

2Many studies compare computational methods for DSGE models (cf. Taylor and Uhlig, 1990; Christiano
and Fisher, 2000; Schmitt-Grohé and Uribe, 2004; Aruoba, Fernández-Villaverde and Rubio-Ramı́rez, 2006;
Caldara, Fernández-Villaverde, Rubio-Ramı́rez, and Yao, 2009).
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We show how to extend existing standard algorithms when we allow for the possibility of

rare events. We propose the continuous-time formulation of DSGE models to circumvent the

difficulties that arise when we allow for departures from normalities in the form of Poisson

shocks in non-linear models, which is largely unexplored land.

Our framework. Our analysis builds on the continuous-time formulation of a stochastic

neoclassical growth model based on Merton (1975). This procedure is applicable to models

which imply an equilibrium system of controlled stochastic differential equations (SDEs)

under Poisson uncertainty where the controls are Markov controls in the form of policy

functions (cf. Sennewald, 2007). There is no conceptional difficulty to allow for stochastic

processes with controlled variance-covariance and/or controlled jump sizes.

We use the continuous-time formulation of DSGE models for two reasons. Firstly, we can

easily compute stochastic differentials for transformations based on random variables under

Poisson uncertainty. Secondly, for parametric restrictions we can solve the models by hand

and obtain closed-form policy functions which can be used as a point of reference. From this

benchmark numerical methods can explore broader classes of models (cf. Judd, 1997).

Our idea is to transform the system of SDEs into a system of functional differential

equations of the retarded type (RDEs). We then use the Waveform Relaxation algorithm to

provide a guess of the policy function and solve the resulting system of ordinary differential

equations (ODEs) by standard methods and fix-point iteration.

Results. Our solution method works. Although the suggested procedure computes the

policy functions for the complete state space - even for non-linear solutions - the maximum

(absolute) error compared to the exact solutions is very small. A strength of our approach

is that existing algorithms can be extended to allow for Poisson uncertainty. We illustrate

our approach for two popular methods computing numerical solutions to dynamic general

equilibrium models, i.e., the backward integration (Brunner and Strulik, 2002) and the Re-

laxation algorithm (Trimborn, Koch and Steger, 2008). From an economic point of view, we

find that (potential) large shocks affect optimal consumption and hours strategies.

Table of contents. The paper proceeds as follows. Section 2 holds the class of macro

models to which the algorithm is applicable. Section 3 relates the models to our numerical

solution technique based on Waveform Relaxation. Section 4 gives examples and computes

the numerical errors for the benchmark solutions. Section 5 concludes.

2 The macroeconomic theory

This section introduces a broad class of macro models which can be solved by means of

Waveform Relaxation. For illustration, we formulate the models for scalar processes, i.e.,
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assuming only one control and one state variable. As shown below, the class of models can

be extended to the case of multiple controls and states without any conceptional difficulties.

Consider the following typical autonomous infinite horizon stochastic control problem,

max E

∫ ∞

0

e−ρtu(xt, ct)dt s.t. dxt = f(xt, ct)dt + g(xt−, ct−)dNt, (1)

x0 = x, N0 = z, (x, z) ∈ Ux × R+, Ux ⊆ R,

where {Nt}∞t=0 is a Poisson process with arrival rate λ = λ(xt, ct), and a value xt− ≡ lims→t xs

s < t denotes the left-limit of this variable at time t. Intuitively, xt− denotes the value of

the variable an instant before a possible jump, such that for continuous paths xt = xt−.

2.1 Bellman’s principle and reduced form descriptions

Closely following Sennewald (2007), choosing an admissible control, c ∈ Uc ⊆ R, from the

control region Uc and using V (x) as the value function, we obtain the Bellman equation

ρV (x) = max
c∈Uc

{

u(x, c) +
1

dt
E0dV (x)

}

,

which is a necessary condition for optimality. Using Itô’s formula (change of variables),

dV (x) = f(x, c)Vx(x)dt + (V (x + g(x, c)) − V (x))dNt.

If we take the expectation of the integral form and use the martingale property, assuming

that the above integrals exist, in particular that u(xt, ct) satisfies some boundedness condition

(Sennewald, 2007, Theorem 2), we arrive at

E0dV (x) = f(x, c)Vx(x)dt + (V (x + g(x, c)) − V (x))λ(x, c)dt, (2)

and the Bellman equation becomes

ρV (x) = max
c∈Uc

{u(x, c) + f(x, c)Vx + (V (x + g(x, c)) − V (x))λ(x, c)} .

A neat result about the continuous-time formulation (compared to discrete-time models) is

that the Bellman equation (2) is, in effect, a deterministic differential equation because the

expectation operator disappears (Chang, 2004, p.118). The first-order condition reads

uc(x, c) + fc(x, c)Vx(x) + Vx(x + g(x, c))gc(x, c)λ(x, c)

+(V (x + g(x, c)) − V (x))λc(x, c) = 0, (3)

for any s = t ∈ [0,∞) making the optimal control a function of the state variable, ct = c(x).

In contrast to deterministic control problems we obtain a first-order term linking both the
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utility before and after a jump resulting from the Poisson process (controlled jump size), and

the value of the optimal program before and after the jump (controlled jumps). Note that

the costate variable and the value function is evaluated at different values of x, respectively.

For the evolution of the costate we use the maximized Bellman equation,

ρV (x) = u(x, c(x)) + f(x, c(x))Vx + (V (x + g(x, c(x))) − V (x))λ(x, c(x)),

where the optimal control is a function of the state variables. We make use of the envelope

theorem to compute the costate,

ρVx(x) = ux(x, c(x)) + fx(x, c(x))Vx + f(x, c(x))Vxx

+(Vx(x + g(x, c(x)))(1 + gx(x, c)) − Vx(x))λ(x, c(x))

+(V (x + g(x, c(x))) − V (x))λx(x, c(x)).

Collecting terms we obtain

(ρ − fx(x, c) + λ(x, c))Vx = ux(x, c) + f(x, c)Vxx + Vx(x + g(x, c))(1 + gx(x, c))λ(x, c)

+(V (x + g(x, c)) − V (x))λx(x, c). (4)

Using Itô’s formula, the costate obeys

dVx(x) = (f(x, c)Vxx(x)) dt + (Vx(x + g(x, c)) − Vx(x)) dNt,

where inserting (4) yields the evolution of the costate variable

dVx(x) = ((ρ − fx(x, c) + λ(x, c)) Vx(x) − ux(x, c) − Vx(x + g(x, c))(1 + gx(x, c))λ(x, c)) dt

−(V (x + g(x, c)) − V (x))λx(x, c) + (Vx(x + g(x, c)) − Vx(x)) dNt.

As the final step, we implicitly obtain the Euler equation from the first-order condition.3

Further, the transversality condition may be formulated as limt→∞ e−ρtV (x) ≥ 0 for all

admissible paths, where the equality holds for the optimal solution.

Case 2.1 (Controlled SDE) Consider the stochastic control problem where g(x, c) = g(x),

λ(x, c) = λ, u(x, c) = u(c) and fc(x, c) = −1.

Observe that the first-order condition (3) reduces to u′(ct) = Vx(xt). Hence, a reduced form

is given by the following system of SDEs for the state (1) and the costate,

du′(c(xt)) = ((ρ − fx(xt, ct) + λ)u′(ct) − u′(c(xt + g(xt)))(1 + gx(xt))λ) dt

+ (u′(c(xt− + g(xt−))) − u′(c(xt−))) dNt. (5)

3This ‘three-step’ procedure was suggested in Sennewald and Wälde (2006).
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Suppose u′′(c) 6= 0, then for c = h(u′(c)) where h(·) is the inverse function, it reads

dct = ((ρ − fx(xt, ct) + λ)u′(ct) − u′(c(xt + g(xt)))(1 + gx(xt))λ) /u′′(ct)dt

+ (c(xt− + g(xt−)) − c(xt−)) dNt, (6a)

dxt = f(xt, ct)dt + g(xt−)dNt, (6b)

where we used the property of the inverse function, dh(u′(c))/du′(c) = dc/du′(c) = 1/u′′(c).

Case 2.2 (Controlled SDE with controlled momentum) Consider the stochastic con-

trol problem where λ(x, c) = λ, u(x, c) = u(c), gc(x, c) 6= 0, and fc(x, c) = −1.

Observe that the first-order condition (3) reduces to u′(c)− Vx(x) + Vx(x + g(x, c))gc(x, c)λ.

Hence, a reduced form is given by the following system of SDEs,

dVx = ((ρ − fx(xt, ct) + λ)Vx(xt) − Vx(xt + g(xt, ct))(1 + gx(xt, ct))λ) dt,

+ (Vx(xt− + g(xt−, ct−)) − Vx(xt−)) dNt (7a)

dxt = f(xt, ct)dt + g(xt−, ct−)dNt, (7b)

using the first-order condition as an algebraic equation.

Case 2.3 (Controlled SDE with controlled arrivals) Consider the stochastic control

problem where g(x, c) = g(x), λ(x, c) = λ(c), u(x, c) = u(c) and fc(x, c) = −1.

Observe that the first-order condition (3) reduces to u′(c) − Vx(x) + (V (x + g(x, c)) −

V (x))λc(c) = 0. Hence, a reduced form is given by the following system of SDEs,

dV = f(xt, ct)Vx(xt)dt + (V (xt + g(xt−)) − V (xt−))dNt, (8a)

dVx = ((ρ − fx(xt, ct) + λ(ct)) Vx(xt) − Vx(xt + g(xt, ct))(1 + gx(xt))λ(ct)) dt

+ (Vx(xt− + g(xt−)) − Vx(xt−)) dNt, (8b)

dxt = f(xt, ct)dt + g(xt−)dNt, (8c)

using the first-order condition as an algebraic equation.

3 The numerical solution

This section transforms the reduced forms into a system of functional differential equations

of the retarded type (RDEs). We relate the problem to Waveform Relaxation, providing a

guess of the optimal policy function and solving the resulting systems of ODEs.
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3.1 Description of the problem

In order to illustrate our solution method, we focus on a system of controlled stochastic

differential equations (6) of Case 2.1, which can be generalized to

dct = f1 (ct, xt,~c, ~x) dt + g1(ct−, xt−)dNt, (9a)

dxt = f2 (ct, xt,~c, ~x) dt + g2(ct−, xt−)dNt, (9b)

given initial states x0. The generalization stems from the fact that the system of SDEs in

(9) at date t implicitly depends on its complete solution path {~c, ~x} ≡ {(cτ , xτ ), τ ∈ R},

i.e., on the optimal pair at any admissible date τ . Technically, we define the functions

~c : R → Uc ⊆ Rnc and ~x : R → Ux ⊆ Rnx, where Uc denotes the control region and Ux the

state space with nc and nx denoting the number of controls and states, respectively. Hence,

we define the functions f1, f2, g1, g2 as

f1 : Uc × Ux × Ck(R, Uc) × Ck(R, Ux) → R
nc, (10a)

f2 : Uc × Ux × Ck(R, Uc) × Ck(R, Ux) → R
nx, (10b)

g1 : Uc × Ux → R
nc, (10c)

g2 : Uc × Ux → R
nx, (10d)

which are assumed to be sufficiently smooth. More precisely, all functions are of class Ck, i.e.,

the partial derivatives of its component functions of up to (and including) order k exist and

are continuous, where k is sufficiently large. In Case 2.1 (controlled SDE), the dependency

on the complete solution stems from the observation that a Poisson jump implies that the

state variable xt jumps by g2(ct−, xt−). Consumers consider the possibility of jumps in their

optimal control problem and optimally take into account the level of their control variables

if such rare events occur. Therefore at one point in time, say t, the solution at another point

in time τ ∈ R (or another given state xτ ) influences the slopes dct and dxt.

System (9) has to be augmented by boundary conditions for the beginning and the end

of the time horizon. Transversality conditions usually require (scale-adjusted) variables to

converge towards some interior steady states for t → ∞, conditional on no jumps, dNt ≡ 0.4

We denote steady-state values by {c∗, x∗} ⊆ {~c, ~x}. However, it is not sufficient to compute

the solution on the domain [x0, x
∗], because a state could be thrown back to an even smaller

value than x0 or jump to a value above x∗. In that perspective, the optimal control on [x0, x
∗]

depends on the optimal control for some xt < x0 and xt > x∗. Since this argument holds for

any component of the state vector in the state space Ux, the solution has to be computed

on the entire domain Ux, which for macroeconomic problems usually is Ux = R
nx

+ .

4If no ambiguity arises, we use ‘steady state’ and ‘conditional steady state’ interchangeably.
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We assume that system (9) has a unique solution, {~c, ~x}, which only depends on state

variables, but not on the random variable Nt. This means that given the actual state xt at

date t, the optimal control variables are uniquely determined. For cases where one function,

say f1 = f1(ct, xt, Zt,~c, ~x) is a function of a random variable, Zt, in general our procedure

requires conditioning, Zt = z, such that f1 = f1(ct, xt, z,~c, ~x) ≡ f̄1(ct, xt,~c, ~x).

3.2 The Waveform Relaxation algorithm

The crucial task for the numerical solution is to compute the policy function implied by the

(conditional) deterministic system, i.e., for dNt ≡ 0,

dct = f1 (ct, xt,~c, ~x) dt, (11a)

dxt = f2 (ct, xt,~c, ~x) dt. (11b)

In a second step, the stochastic paths are obtained by adding the Poisson process Nt, making

use of the entire solution path {~c, ~x} and thus ct = c(xt). The controls and the states follow

the paths implied by the system (11) as long as no jump occurs (pathwise continuous). If a

jump occurs at date t−, the systems adjusts according to g1 and g2 with ct− = c(xt−).

In the mathematical literature, the equations in system (11) are referred to as functional

differential equations of the retarded type (cf. Hale, 1977; Kolmanovskii and Myshkis, 1999).

In this special case the ‘delay’ depends on the unknown solution, because a jump changes

the value of the state variable and throws the economy ‘back in time’ to a different state.

Here, the discrete change is known in terms of the state, not in terms of time, which however

does not preclude us to apply a similar solution method for our autonomous problem.

For calculating the policy function ct = c(xt) we exploit the fact that numerous numerical

methods are available to solve (11) without a dependency on the optimal solution,

dct = f̃1 (ct, xt) dt, (12a)

dxt = f̃2 (ct, xt) dt. (12b)

The idea of Waveform Relaxation algorithms is as follows: by providing a guess of the

optimal pair {~c0, ~x0}, system (11) reduces to (12), because the feedback of the solution path

on dct and dxt is neglected.5 Now, problem (12) is a standard system of ODEs and can thus

be solved by standard algorithms.6 In general, the obtained solution {~c1, ~x1} will be different

5Waveform Relaxation algorithms for initial value problems and appropriate error estimation are described
in Feldstein, Iserles and Levin (1995), Bjørhus (1994) and Bartoszewski and Kwapisz (2001). Alternative
procedures for solving system (11) are collocation methods as described in Bellen and Zennaro (2003).

6For problems with one state variable, among others, these are the backward integration procedure
(Brunner and Strulik, 2002) and the procedure of time elimination (Mulligan and Sala-i-Mart́ın, 1991). For
problems with multiple state variables we can use projection methods (e.g., Judd, 1992), the method of
Mercenier and Michel (1994), and the Relaxation method (Trimborn et al., 2008).
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from the initial guess {~c0, ~x0}. Hence, a solution of the original deterministic problem (11)

is not found yet. In the next step the initial guess is updated to {~c1, ~x1} and the loop is

repeated. If the updated solution {~ci, ~xi} is the same as the guess {~ci−1, ~xi−1}, a solution of

the deterministic problem (11) is found and thus ct = c(xt).

More formally, we construct a fix-point iteration for the operator N such that a function

z is a fix point of this operator: N (z) = z. The function z represents the desired solution,

z : R → Rnc+nx. The operator N is defined by a modification of problem (11). We start

with a trial solution z0 and iterate by evaluating N , until ‖zi − zi−1‖ is sufficiently small.

For defining the operator N , we take a trial solution {~c0, ~x0} as given. We define

dci = f1 (ci(t), xi(t),~ci−1, ~xi−1) dt, (13a)

dxi = f2 (ci(t), xi(t),~ci−1, ~xi−1) dt, (13b)

for each iteration i = 1, . . . , n. Hence, system (13) represent a system of ordinary differential

equations which can be solved by the existing standard numerical methods.

For single-state problems (nx = 1) we employ the backward integration method proposed

by Brunner and Strulik (2002).7 For the description of this method, recall that equations

(13a) and (13b) represent a system of ODEs with an interior, computable stationary point.

This point usually exhibits a saddle-point structure, i.e., a stable one-dimensional manifold

(policy function) connecting the steady state to the origin, and an unstable one-dimensional

manifold. Our task is to compute the stable manifold numerically, for which we exploit

the saddle-point structure. By reversing time, the stable (unstable) manifold becomes an

unstable (stable) manifold. Thus, by starting near the manifold, solution trajectories are

attracted by the policy function.

An important difference to standard methods in each iteration step is the evaluation of

{~ci, ~xi}. The reason is that the solution of the previous iteration {~ci−1, ~xi−1} is only available

on a mesh of points in time, or equivalently that the function ci−1(xi−1) in the phase space

is only represented at certain points. However, functions f1 and f2 of system (13) also need

an evaluation of {~ci−1, ~xi−1} at interior points. We employ a cubic spline interpolation of

ci−1(xi−1) to evaluate f1 and f2. In order to evaluate the improvement in convergence, a

suitable norm has to be chosen. We calculate the deviation of the policy function between

two iterations on a mesh of points representing the whole state space (0,∞) and employ the

Euclidian norm, i.e., ||ci(xi)− ci−1(xi)||, where 0 < xi(1) < ... < xi(M) < ∞ and M denotes

the number of points on the mesh (M determines the accuracy of the solution).

For multiple-state problems (nx > 1) we employ the Relaxation algorithm as described in

Trimborn et al. (2008) to solve the deterministic system (13). This method can be applied

7Note that backward iteration can be applied to any number of control variables, i.e., nc ≥ 1.
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to continuous-time deterministic problems with any number of state variables. The principle

of relaxation is to construct a large set of non-linear equations, the solution of which repre-

sents the desired trajectory. This is achieved by a discretization of the involved differential

equations on a mesh of points in time. The set of differential equations is augmented by

algebraic equations representing equilibrium conditions or (static) no-arbitrage conditions at

each mesh point. Finally, equations representing the initial and final boundary conditions

are appended. The whole set of equations is solved simultaneously.

For multiple-state problems, the policy function is also multidimensional. Technically,

ct = c(xt) : Ux ⊆ Rnx → Uc ⊆ Rnc. We select starting values x0 uniformly located in a

rectangle in the state space Ux and calculate transitional dynamics starting from each of

these initial values. The solutions give a good representation of the policy function. Again,

the policy function is only available on a mesh in the state space. Similar to the simulations

with a one-dimensional state space, we employ a cubic spline interpolation to obtain the

policy function at arbitrary interior points. Different from the procedure above, we use only

the initial value of each iteration for interpolation. This turns out to be a more robust

approach, presumably due to the evenly spaced grid one obtains in this case.

4 Examples

The following examples are intended to illustrate potential economic applications in macro.

To start with, we first consider the stochastic Ramsey problem with a single control and state

variable, and then use a stochastic version of the Lucas model of endogenous growth mainly

to illustrate the fact that multi-dimensional systems do not pose conceptional difficulties. In

order to keep notation simple, we only consider problems faced by a benevolent planner, and

use capital letters to denote variables in the planning problem which correspond to individual

variables in the household’s and firms’ problems.

4.1 A neoclassical growth model with disasters

This section solves the stochastic neoclassical growth model under Poisson uncertainty which

is motivated by the Barro-Rietz rare disaster hypothesis (Rietz, 1988; Barro, 2006).

Specification. Suppose that production takes the form of Cobb-Douglas, Yt = Kα
t L1−α,

0 < α < 1. Labor is supplied inelastically and capital can be accumulated according to

dKt = (Yt − Ct − δKt) dt − γKt−dNt, K0 = x, N0 = z, (x, z) ∈ R
2
+, 0 < γ < 1, (14)

where Nt denotes the number of (natural) disasters up to time t, occasionally destroying γ
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percent of the capital stock Kt at an arrival rate λ ≥ 0.8

The benevolent planner maximizes welfare by choosing controls c ∈ Uc ⊆ R+,

max E

∫ ∞

0

e−ρtu(Ct)dt where u′ > 0, u′′ < 0 s.t. (14). (15)

Solution. From the Bellman principle, a necessary condition for optimality is

ρV (x) = max
c∈Uc

{

u(c) + (xαL1−α − c − δx)Vx + (V (x − γx) − V (x))λ
}

, (16)

and the first-order condition corresponding to (3) reads

u′(c) − Vx(x) = 0 (17)

for any s = t ∈ [0,∞), making the control variable a function of the state variable, c = c(x).

Hence, the problem (15) can be summarized as a system of controlled SDEs,

dCt =
(

(ρ − αKα
t L1−α − δ + λ)u′(Ct)/u

′′(Ct) − u′(C((1 − γ)Kt))/u
′′(Ct)(1 − γ)λ

)

dt

+ (C((1 − γ)Kt−) − C(Kt−)) dNt, (18a)

dKt = (Kα
t L1−α − Ct − δKt)dt − γKt−dNt, (18b)

corresponding to system (6) in Case 2.1.

Case 4.1 (CRRA preferences) Consider the case where −u′′(Ct)Ct/u
′(Ct) = θ.

For constant relative risk aversion (CRRA) where −u′′(Ct)Ct/u
′(Ct) = θ, we obtain

dCt =
(

αKα
t L1−α − ρ − δ − λ + λ(1 − γ)C̃(Kt)

−θ
)

Ct/θdt −
(

1 − C̃(Kt−)
)

Ct−dNt,

dKt = (Kα
t L1−α − Ct − δKt)dt − γKt−dNt,

where C̃(Kt) ≡ C((1 − γ)Kt)/C(Kt), such that 1 − C̃(Kt−) denotes the percentage drop of

optimal consumption after a disaster. CRRA utility is frequently used in macroeconomics,

thus our numerical results all employ this standard description of preferences.

4.1.1 Evaluation of the algorithm

We calculate numerical solutions for two benchmark calibrations. In both cases, an analytical

representation of the policy function can be computed for plausible parameter restrictions.

8For a stochastic neoclassical growth model with elastic labor supply and the asset market implications
of the Barro-Rietz rare disaster hypothesis, the interested reader is referred to Posch (2009a).
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Therefore, we can compare numerical and analytical solutions and calculate computational

errors to evaluate the performance of the Waveform Relaxation algorithm.9

Because the neoclassical growth model has one state variable, it is well suited for the

backward integration procedure (cf. Brunner and Strulik, 2002). As explained above, by

starting near the steady-state value K∗ (the value towards which the economy tends if no

disasters occur), the solution trajectories are attracted by the optimal policy function.10

Our first benchmark solution employs a common calibration in stochastic growth models

(cf. Posch, 2009b). We use parameters (α, θ, δ, λ, γ) = (0.5, 2.5, 0.05, 0.2, 0.1) and impose the

parametric restriction ρ = ((1−γ)1−αθ−1)λ−(1−αθ)δ, which yields an empirically plausible

value, ρ = 0.0178. Using this calibration the average time between two disasters is 1/λ = 5

years, with each Poisson event destroying 10 percent of the capital stock. Calibrating rare

events being less frequent and/or smaller as e.g. for US data (with γ roughly 2.5 percent),

our algorithm if anything would improve performance since the true solution is closer to the

deterministic guess. As shown in the appendix, in this case consumers choose a constant

saving rate s ≡ 1/θ and the policy function is Ct = C(Kt) = (1 − s)L1−αKα
t . Thus the

optimal jump term is constant, C̃(Kt) = (1−γ)α. Although technically a knife-edge solution,

the policy functions for solutions around this parameter region are very similar. As shown

in Figure 1, the deterministic policy function (for λ = 0 and/or γ = 0) and the stochastic

policy function differ substantially for our calibration, which illustrates that (potential) rare

events can have substantial effects on households’ behavior.

Figures 2a and 2b show the absolute and relative error of the numerically obtained

policy function compared to the analytical solution, respectively. Both plots indicate that

the solution exhibits a high accuracy even for a large deviation from the steady state implied

by economically large shocks. The absolute and relative errors compared to the true solution

are below 10−8 within the most relevant interval between 0 and K∗. The maximum (absolute)

errors are below 10−5 for values of capital of 150 percent of K∗, which is below the accuracy

usually required for economic applications. Economically, this value denotes the error as a

fraction of consumption at Kt: with an relative error of 10−5, the consumer is making a $1

mistake for each $10, 000 spent (Aruoba et al., 2006, p.2499).

Figures 2c and 2d show the absolute and relative change of the policy function, respec-

tively, compared to the previous iteration. It is apparent that both functions are of the same

9The literature typically evaluates the performance using Euler equation residuals (see e.g. Judd, 1992).
Santos (2000) shows that approximation errors of the policy function are of the same order of magnitude
as the Euler equation residuals. Hence, we are able to compare our results with algorithms solving similar
models (as in Aruoba, Fernández-Villaverde and Rubio-Ramı́rez, 2006; Dorofeenko, Lee and Salyer, 2010).

10For the backward integration procedure we deviate 10−12 in magnitude from the ‘steady state’ and we
choose 10−12 as relative error tolerance for the Runge-Kutta procedure (cf. Brunner and Strulik, 2002).
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shape and order of magnitude as the numerical errors compared to the analytical solution.

This shows that the change of the policy function between two iterations is an excellent ap-

proximation for measuring the numerical error of the solution. We make use of this striking

similarity to define our criterion function to gauge the accuracy of the numerical solution for

the general case where no analytical solution is available.

Our second benchmark solution requires the parametric restriction α = θ, which implies

a linear policy function, Ct = C(Kt) = φKt.
11 As shown in the appendix, the marginal

propensity to consume is φ = (ρ− ((1− γ)1−θ − 1)λ− (θ − 1)δ)/θ. Since the policy function

is linear, the optimal jump term is constant, C̃(Kt) = 1 − γ. For ease of comparison, we

choose the same calibration for parameters as above, but a smaller value for the parameter

of relative risk aversion (or higher value for the intertemporal elasticity of substitution),

θ = 0.5. As shown in Figure 3a both the deterministic policy function and stochastic policy

function are indeed linear in the capital stock. Once again, both policy functions differ

substantially. Figure 3b shows the optimal jump in consumption with respect to capital,

which is again independent of capital.

Figures 4a and 4b show the absolute and relative error of the numerically obtained policy

function compared to the analytical solution, respectively. In fact, the solution exhibits a

high accuracy of roughly 10−15, close to the machine’s precision. Figures 4c and 4d show the

absolute and relative change of the policy function, respectively, compared to the previous

iteration. Again both measures are of similar shape and order of magnitude.

Our third illustration in Figure 5a shows both the deterministic and the stochastic policy

functions for the intermediate case of logarithmic preferences, θ = 1, for which no analytical

solution is known. As shown in Figure 5b the optimal jump term now indeed varies with

the capital stock and the function C̃(Kt) is decreasing in capital. As before, we iterate until

convergence, i.e., the change of the policy function between two iterations is sufficiently small

(cf. Figures 5a and 5b). Because no analytical benchmark solution is available, we now use

that both the absolute and relative change of the policy function between two iterations have

the same order of magnitude to conclude that the maximum (absolute) error is roughly 10−8

within values for capital between 0 and 150 percent of K∗.

Finally, we should emphasize three main points: First, convergence does not depend on

parameter restrictions. The algorithm proves to be stable for a wide range of parameters. We

restrict the presentation of results to the three calibrations only due to lack of space. Second,

computational requirements are rather small. The solution of the model on a standard

laptop requires between some seconds and a few minutes. Third, our procedure can be

implemented with an average ability in computational skills. While the numerical solution

11This solution is well established in macroeconomics (cf. Posch, 2009b, and the references therein).
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of the deterministic system is standard, the novel part mainly consists of an interpolation

routine based on the Waveform Relaxation idea. However, most software packages provide

routines for (spline) interpolation. The Matlab codes and details of our implementation are

summarized in a technical appendix, both are available on request.

4.1.2 The economic effects of rare disasters

Asking whether rare disasters lead to higher saving is equivalent to examining whether more

uncertainty raises or lowers the marginal propensity to consume. It is well established that

the intertemporal substitution effect depresses the marginal propensity to save for risk-avers

individuals, as the optimum way to maintain the original utility level when uncertainty

increases is to consume more today (and thus avoid facing the disaster risk). In contrast,

the income effect is a precautionary savings effect, as higher uncertainty implies a higher

probability of low consumption tomorrow against which consumers will protect themselves

the more, by consuming less, the more averse they are to intertemporal fluctuations of

consumption (cf. Leland, 1968; Sandmo, 1970). By using a nonlinear production technology,

the neoclassical theory of growth under uncertainty offers a third channel through which

uncertainty has effects on the asymptotic distribution of capital (cf. Merton, 1975).

As shown in Weil (1990), the effect on optimal consumption (or saving) depends on

the magnitude of the intertemporal elasticity of substitution, 1/θ.12 Moreover, optimal

consumption depends on the degree of curvature of the production technology, α, since the

curvature of the policy function matters for effective risk aversion (cf. Posch, 2009a). In case

the income effect is relatively small, θ < 1, the presence of rare disasters tends towards higher

consumption (cf. Figure 3a). For the case where income and substitution effects balance

each other out, θ = 1, the only effect on consumption is due to the concave production

technology which depresses the marginal propensity to save (cf. Figure 5a), i.e., the mean

capital stock decreases. It is only when the intertemporal elasticity of substitution is small,

θ > 1, the precautionary savings motive dominates the substitution effect and eventually

the effect of the nonlinear production technology, and savings increase (cf. Figure 1a).

4.2 Lucas’ model of endogenous growth with disasters

This section uses the Waveform Relaxation algorithm to solve a stochastic version of the

Lucas (1988) endogenous growth model with two controls and two state variables. Motivated

by the rare disaster hypothesis, rare events - such as natural disasters - occasionally destroy

12Weil (1990) shows that risk aversion, by determining the amplitude of the associated reduction in the
certainty equivalent rate of return to saving, only affects the magnitude of the effects described above.
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a fraction of the physical capital stock. Our solution method sheds light on the effects on

optimal consumption, human capital accumulation, and thus the balanced growth rate.

Specification. Consider a closed economy with competitive markets, with identical agents

and a Cobb-Douglas technology, Yt = kα
t (utht)

1−αL, where 0 < α < 1. Suppose at date t,

L workers (normalized to one) have skill level ht and own the physical capital stock, kt. A

worker devotes ut of his non-leisure time to current production, and the remaining 1− ut to

human capital accumulation (improving skills). Hence, the effective aggregate hours devoted

to production are uthtL. Denoting wt as the hourly wage rate per unit of effective labor, the

individual’s labor income at skill ht is wthtut. Let the rental rate of physical capital be rt.

For simplicity, there is no capital depreciation, thus kt evolves according to

dkt = (rtkt + wtutht − ct) dt − γkt−dNt, (20)

where Nt denotes the number of (natural) disasters up to time t, occasionally destroying

0 < γ < 1 percent of the capital stock kt at an arrival rate λ ≥ 0.

To complete the model, the research effort 1− ut devoted to the accumulation of human

capital must be linked to ht. Suppose the technology relating the change of human capital

dht to the level already attained and the effort devoted to acquiring more is

dht = (1 − ut)ϑhtdt. (21)

According to (21), if no effort is devoted to human capital accumulation, ut = 1, then non

accumulates. If all effort is devoted to this purpose, ut = 0, ht grows at rate ϑ > 0. In

between these extremes, there are no diminishing returns to the stock ht.

The resource allocation problem faced by the representative individual is to choose a time

path for ct and for ut in Uc ⊆ R+ × [0, 1] such as to maximize expected life-time utility,

max
{ct,ut}

∞

t=0

E0

∫ ∞

0

e−ρt c1−θ
t

1 − θ
dt s.t. (20) and (21), (k0, h0, N0) ∈ R

3
+, (22)

where θ > 0 denotes constant relative risk aversion and ρ is the subjective time preference.

Solution. From the Bellman principle, choosing the controls c0, u0 ∈ Uc requires the

Bellman equation as a necessary condition for optimality,

ρV (k0, h0) = max
c0,u0∈Uc

{

c1−θ
0 /(1 − θ) + (r0k0 + w0u0h0 − c0)Vk + (1 − u0)ϑh0Vh

+(V ((1 − γ)k0, h0) − V (k0, h0))λ
}

. (23)

For any t ∈ (0,∞), the two first-order conditions corresponding to (3) are

c−θ
t − Vk = 0, (24)

wthtVk − ϑhtVh = 0, (25)
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making the controls a function of the state variables, ct = c(kt, ht) and ut = u(kt, ht).

After some tedious algebra we obtain the Euler equations for consumption and hours.

Together with initial and transversality conditions, and budget constraints in (20) and (22),

these describe the equilibrium dynamics. We may summarize the reduced form dynamics by

defining c̃(kt, ht) ≡ c((1 − γ)kt, ht)/c(kt, ht) and ũ(kt, ht) ≡ u((1 − γ)kt, ht)/u(kt, ht) as

dkt = (rtkt + wtutht − ct) dt − γkt−dNt, (26a)

dht = (1 − ut)ϑhtdt, (26b)

dct =
rt − ρ − λ + c̃(kt, ht)

−θ(1 − γ)λ

θ
ctdt + (c̃(kt−, ht−) − 1)ct−dNt, (26c)

dut =
(

1−α
α

ϑ +
(

ũ(kt, ht)
−α − (1 − γ)1−α

)

(1 − γ)αλc̃(kt, ht)
−θ/α − ct/kt + utϑ

)

utdt

+(ũ(kt, ht) − 1)ut−dNt, (26d)

and the transversality condition reads (cf. Benhabib and Perli, 1994, p.117)

lim
t→∞

E0

[

Vke
−ρt[kt − k∗

t ] + Vhe
−ρt[ht − h∗

t ]
]

≥ 0

for all admissible kt and ht, where k∗
t and h∗

t denote the optimal state values.

Balanced growth. From the reduced form system, we can derive the balanced growth

rate of physical capital, human capital and consumption of the conditional deterministic

system (conditioned on no disasters) as follows. First, we can neglect the stochastic integrals

because for the case with no disasters, dNt ≡ 0. Second, similar to the deterministic model,

the condition optimal research effort is constant, such that dut = 0 must hold.

Now, for dut = 0 research effort along the balanced growth path is implicitly given by

−ϑu∗ = 1−α
α

ϑ + (ũ−α − (1 − γ)1−α) (1 − γ)αλc̃−θ/α − c/k, where ũ ≡ ũ(kt, ht), c̃ ≡ c̃(kt, ht)

and c/k ≡ ct/kt are constants. This property of the jump terms implies that asymptotically,

c̃(kt, ht) = c̃(kt/ht). Similarly, along this balanced growth path the other equations imply

gk = r∗/α − c/k, gh = (1 − u∗)ϑ, gc =
(

r∗ − ρ − λ + c̃−θ(1 − γ)λ
)

/θ.

Since ct/kt is constant, ct and kt must grow at the same rate,

gk = gc ⇒ c/k =
(

r∗ − ρ − λ + c̃−θ(1 − γ)λ
)

/θ + r∗/α.

Along this path r∗ is constant, which requires that kt and ht must growth at the same rate,

gk = gh ⇒ r∗/α − c/k = (1 − u∗)ϑ

⇔ r∗ = ϑ +
(

ũ−α − (1 − γ)1−α
)

c̃−θ(1 − γ)αλ.

Hence, the balanced growth rate of the conditional deterministic system is

g ≡
(

ϑ − ρ − λ + (1 − γ)αũ−αc̃−θλ
)

/θ, (27)
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which implies

c/k =
(

ϑ +
(

ũ−α − (1 − γ)1−α
)

c̃−θ(1 − γ)αλ − ρ − λ + c̃−θ(1 − γ)λ
)

/θ

+
(

ϑ +
(

ũ−α − (1 − γ)1−α
)

c̃−θ(1 − γ)αλ
)

/α.

The growing variables of the reduced-form system ct, ht, and kt in (26) need to be scaled

such that they approach some stationary steady-state values (scale-adjustment).

Scale-adjusted dynamics. In what follows, we simply subtract the endogenous balanced

growth rate (27) from the reduced-form system in instantaneous growth rates to obtain

scale-adjusted variables. The scale-adjusted system (conditioned on no disasters) reads

d ln kt = (rt + wtutht/kt − ct/kt − g) dt, (28a)

d lnht = (ϑ − utϑ − g)dt, (28b)

d ln ct =
((

rt − ρ − λ + c̃(kt, ht)
−θ(1 − γ)λ

)

/θ − g
)

dt, (28c)

dut =
(

1−α
α

ϑ +
(

ũ(kt, ht)
−α − (1 − γ)1−α

)

(1 − γ)αλc̃(kt, ht)
−θ/α − ct/kt

)

utdt

+ϑu2
t dt, (28d)

where g follows iteratively from (27).

Note that in general it is not possible to compute the steady state levels in terms of

variables k∗, h∗, c∗, and u∗ from system (28). We presume that the stochastic model inherits

this characteristic from its deterministic counterpart, which exhibits a ray of steady states,

i.e., a center manifold of stationary equilibria (cf. Lucas, 1988; Caballé and Santos, 1993).

Each point on this ray differs with respect to the level of physical and human capital and,

hence, consumption the economy can generate. The particular stationary equilibrium, to

which the economy finally converges is determined by the initial values of physical and human

capital. Since in general the functions c̃ and ũ are not known for the stochastic counterpart

of the model, we are not able to prove this property for the general case. However, for a

specific parametric restriction we obtain a closed-form solution and indeed provide a proof

of this property below. Moreover, our numerical results confirm that the stochastic model

indeed exhibits a ray of steady states. A ‘steady-state’ value in the stochastic setup again

refers to the value the economy converges if no disasters occur.

We are now prepared to solve this (scale-adjusted) system using the Relaxation algorithm

together with the Waveform relaxation idea.

4.2.1 Evaluation of the algorithm

We calculate numerical solutions for the Lucas model employing a benchmark calibration,

for which an analytical solution is available. Again, we compare the numerical and analytical
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solutions to evaluate the algorithm’s accuracy. Moreover, we calculate numerical solutions

for a second calibration, for which no analytical solution is available.

Because this model has two state variables, we choose the Relaxation algorithm to solve

system (12) (cf. Trimborn et al., 2008). As already mentioned this algorithm is capable of

solving deterministic systems with multiple state variables. Moreover, the algorithm can

also solve models that exhibit a center manifold of stationary equilibria. Since the method

calculates the solution path as a whole, the particular conditional steady state to which the

economy converges is determined numerically.

Our benchmark solution uses the calibration (α, ϑ, λ, γ, ρ) = (0.75, 0.075, 0.2, 0.1, 0.03)

and the parametric restriction θ = α. As shown in the appendix, in this case consumers

optimally choose constant hours, ut = u = (ρ − (1 − θ)ϑ)/(αϑ) and optimal consumption

does not depend on human capital and is linear in physical capital, ct = c(kt, ht) = ϕkt.

ϕ = (ρ − ((1 − γ)1−θ − 1)λ)/θ denotes the marginal propensity to consume with respect

to physical capital. Since the policy function is linear in physical capital the optimal jump

terms are constant, c̃(kt, ht) = 1− γ and trivially ũ(kt, ht) = 1. Observe that this solution is

very similar to the neoclassical growth model, though the growth rate is endogenous. From

(27) we find that for α = θ, the balanced growth rate (in normal times, after the transition)

is not affected by the presence of rare events, g = (ϑ−ρ)/θ. Below we compare our numerical

solution obtained by the Waveform Relaxation algorithm with the analytical solution.

Figures 7a and 7b, respectively, show the optimal level of consumption and the optimal

jump in consumption with respect to physical capital and human capital. Note that the

optimal jump in consumption is independent of both physical capital and human capital.

Similar to the neoclassical growth model, we find that the deterministic policy function for

consumption (for λ = 0 and/or γ = 0) and the stochastic counterpart differ substantially.

Moreover, the center manifold of stationary equilibria of (scale-adjusted) values for human

capital and physical capital is different from the deterministic model, but as discussed above

this property is inherited by the stochastic model from its deterministic counterpart.

Figures 8a and 8b show the absolute and relative error of consumption for the computed

mesh grid of physical and human capital. Given the nature of the problem, the (absolute)

errors are extremely small, not exceeding 10−8 in magnitude. As explained above, this level

of accuracy is higher than what is usually required for most economic applications. Figures

8c and 8d show the absolute and relative change in the policy function for consumption,

respectively, compared to the previous iteration. It is apparent that both functions are of

the same shape and order of magnitude as the numerical errors compared to the analytical

solution, which helps to gauge the numerical error of the solution in the general case.

Similarly to the case of consumption, Figures 9a and 9b show the optimal level of hours
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worked and the optimal jump with respect to physical capital and human capital. Hours

are independent of capital goods along the transition and, hence, do not adjust in case of a

Poisson jump. Figures 10a and 10b show the absolute and relative error of hours worked,

whereas the absolute and relative change in the policy function for hours compared to the

previous iteration are shown in Figures 10c and 10d, respectively. Again, the maximum

(absolute) errors are very small and do not exceed 10−6.

As an illustration for a case where closed-form solutions are not available, we compare our

benchmark solution to the case of logarithmic preferences, θ = 1. Figures 11 and 13 show the

optimal policy functions for consumption and hours and the optimal jump in consumption

and hours, respectively. We find that the optimal levels and their jump terms now depend

on the level of physical capital and human capital. While the level of optimal consumption

is increasing in both capital goods, hours are increasing in human capital but decreasing

in physical capital. Hence, countries with an abundant supply of human capital but scarce

supply of physical capital tend to supply the most hours to production.

Again we would like to emphasize that we are able to calculate policy functions not only

for the parametric restrictions presented above, but for a wider range of parameter values.

However, the algorithm is not as stable as for the one-dimensional case and is less precise

mainly due to interpolation problems. Eventually, for extreme combination of parameter

values problems of convergence might occur, or at least the procedure needs refinement with

respect to the chosen mesh and/or interpolation method. Since our main objective is to show

that multiple state variables do not pose conceptional problems for our solution method, we

leave this work for future research. The Matlab codes and details of our implementation are

summarized in a technical appendix, both available on request.

4.2.2 The economic effects of rare disasters

The Lucas model of endogenous growth has several channels through which uncertainty

enters in the economic decisions, and thus optimal plans will be affected when consumers

face more uncertainty. First, uncertainty will affect the consumption/saving decision as in the

neoclassical growth model. Second, uncertainty will enter the optimal allocation problem

of hours devoted to production and human capital accumulation. Finally, their optimal

behavior takes account of the effect on the (conditional) balanced growth path.

As shown in Figures 7a and 11a, the level of (scale-adjusted) consumption increases

for both calibrations, thus the dominating channel is the intertemporal substitution effect,

i.e., to consume more today (and thus avoid facing the disaster risk). In other words, the

intertemporal elasticity of substitution is sufficiently elastic to compensate the precautionary

savings effect. This is in line with the result from the neoclassical growth model.
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But consumption is no longer the only way to accommodate the presence of risk. From

Figure 13a, for the case of logarithmic preferences with θ = 1, we find that optimal hours

decrease due to the presence of rare disasters (a level shift). Intuitively, consumers prefer to

invest more in human capital accumulation which - in contrast to the physical capital good

- is not subject to disaster risk. Though it seems an intuitive response from an asset pricing

perspective, we find that this result cannot be generalized. As from Figure 9a, optimal

hours are independent of the disaster risk. Supplying less hours for production also has an

income effect, which in the case of α = θ exactly offsets the previous effect. This example

illustrates that it is important to study the effects of uncertainty within a dynamic stochastic

general equilibrium (DSGE) model, in order to avoid missing potentially important feedback

mechanisms when focusing on partial equilibrium effects only.

As from (27), the balanced growth rate (in normal times, after the transition) depends

both on the optimal jump terms for consumption and for hours. In our numerical solution

for θ = 1, the balanced growth rate of the deterministic system (λ = 0 and/or γ = 0),

which gives (ϑ − ρ)/θ = 4.5% increases by roughly 0.2 percentage points to g = 4.7% due

to the presence of rare disasters (which happen not to occur in normal times). An intuitive

explanation of this effect is indeed the shift of optimal hours supplied to human capital

accumulation, and thus implying a higher growth rate in times without disasters.

5 Conclusion

In this paper we propose a simple and powerful method for determining the transitional

dynamics in continuous-time DSGE models under Poisson uncertainty. Our contribution is

to show how existing algorithms can be extended with an additional layer when we allow for

the possibility of rare events in the form of Poisson uncertainty.

We illustrate the algorithm by computing the stochastic neoclassical growth model and a

stochastic version of the Lucas model motivated by the Barro-Rietz rare disaster hypothesis.

As a novelty in dynamic stochastic general equilibrium (DSGE) models, analytical solutions

serve as a benchmark in order to address the numerical accuracy. These analytical solutions

are available for plausible parametric restrictions. We find that even for non-linear policy

functions, the numerical error is extremely small.

From an economic perspective, we show that the simple awareness of the possibility of

infrequent large economic shocks affects optimal decisions and thus economic growth. The

effect is economically important and thus needs to be explored in future research.
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A Appendix

A.1 A closed-form solution to the Ramsey model

The idea is to provide an educated guess of the value function and then derive conditions

under which it satisfies both, the first-order condition and the maximized Bellman equation.

Suppose that

V (Kt) =
C1K

1−αθ
t

1 − αθ
. (29)

From (17), optimal consumption per effective worker is a constant fraction of income,

C−θ
t = C1K

−αθ
t ⇔ Ct = C(Kt) = C

−1/θ
1 Kα

t .

Now use the maximized Bellman equation together with CRRA utility u(Ct) = C1−θ
t /(1−θ)

and insert the solution candidate,

ρV (Kt) =
C(Kt)

1−θ

1 − θ
+ (Kα

t L1−α − C(Kt) − δKt)VK + (V ((1 − γ)Kt) − V (Kt))λ

which is equivalent to

(ρ + λ)
C1K

1−αθ
t

1 − αθ
=

C
− 1−θ

θ

1 Kα−αθ
t

1 − θ
+

(

Kα
t L1−α − C

−1/θ
1 Kα

t − δKt

)

C1K
−αθ
t

+
C1K

1−αθ
t

1 − αθ
(1 − γ)1−αθλ

⇔ 0 =
θ

1 − θ
C

− 1

θ

1 + L1−α − (ρ + (1 − αθ)δ + λ − (1 − γ)1−αθλ)
K1−α

t

1 − αθ

which has a solution for C
−1/θ
1 = (θ − 1)/θL1−α and

ρ = (1 − γ)1−αθλ − λ − (1 − αθ)δ. (30)

For reasonable parametric calibrations equation (30) is satisfied. Though being a special case,

a Keynesian consumption function could be an admissible policy function for the neoclassical

model (cf. also Chang, 1988). Its plausibility is an empirical question.
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A.2 A closed-form solution to the Lucas model

We start with an educated guess on the value function and then derive conditions under

which it actually is the unique solution of the optimal stochastic control problem.

Suppose that

V (kt, ht) =
C1k

1−θ
t + C2h

1−θ
t

1 − θ
. (31)

From (24), we obtain that optimal consumption is a linear function in the capital stock

c−θ
t = C1k

−θ
t ⇒ c(kt, ht) = C

− 1

θ

1 kt (32)

Similarly, from (25) we obtain the optimal share of hours allocated to production, ut,

wthtC1k
−θ
t = ϑhtC2h

−θ
t

⇔ (1 − α)kα
t (utht)

−α
C1k

−θ
t = ϑC2h

−θ
t

⇔ u(kt, ht) =

(

ϑ

(1 − α)

C2

C1

hα−θ
t kθ−α

t

)− 1

α

where we used that wt = (1 − α)kα
t (utht)

−α. Observe that for the parametric restriction

α = θ, optimal hours allocated to production becomes a constant,

α = θ ⇒ u(kt, ht) =

(

ϑ

(1 − α)

C2

C1

)− 1

α

.

Using the maximized Bellman equation, we may write with rt = αkα−1
t (utht)

1−α

ρV (kt, ht) =
c(kt, ht)

1−θ

1 − θ
+ (rtkt + wtu(kt, ht)ht − c(kt, ht))Vk + (1 − u(kt, ht))ϑhtVh

+(V ((1 − γ)kt, ht) − V (kt, ht))λ

=
c(kt, ht)

1−θ

1 − θ
+ (kα

t (u(kt, ht)ht)
1−α − c(kt, ht))Vk + (1 − u(kt, ht))ϑhtVh

+(V ((1 − γ)kt, ht) − V (kt, ht))λ.

Inserting the guess for the value function gives

(ρ + λ)
C1k

1−θ
t + C2h

1−θ
t

1 − θ
=

c(kt, ht)
1−θ

1 − θ
+ (kα

t (u(kt, ht)ht)
1−α − c(kt, ht))C1k

−θ
t

+(1 − u(kt, ht))ϑhtC2h
−θ
t +

C1(1 − γ)1−θk1−θ
t + C2h

1−θ
t

1 − θ
λ

Now insert the policy function for consumption c(kt, ht),

(ρ + λ)
C1k

1−θ
t + C2h

1−θ
t

1 − θ
=

C
− 1−θ

θ

1 k1−θ
t

1 − θ
+

(

kα
t (u(kt, ht)ht)

1−α − C
− 1

θ

1 kt

)

C1k
−θ
t

+(1 − u(kt, ht))ϑC2h
1−θ
t +

C1(1 − γ)1−θk1−θ
t + C2h

1−θ
t

1 − θ
λ.
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and employ the restriction θ = α, where optimal hours is constant, u(kt, ht) = u, it reads

(ρ + λ)
C1k

1−θ
t + C2h

1−θ
t

1 − θ
=

C
− 1−θ

θ

1 k1−θ
t

1 − θ
+

(

u1−αh1−α
t − C

− 1

θ

1 k1−θ
t

)

C1

+(1 − u)ϑC2h
1−θ
t +

C1(1 − γ)1−θk1−θ
t + C2h

1−θ
t

1 − θ
λ.

Collecting terms, we obtain

(

ρ + λ − θC
− 1

θ

1 − (1 − γ)1−θλ
)

C1k
1−θ
t =

(

(1 − θ)u1−α
C1 + (1 − θ)(1 − u)ϑC2 − (ρ + λ)C2 + C2λ

)

h1−θ
t .

Hence, the first constant is pinned down by C1 = (θ/(ρ + λ − (1 − γ)1−θλ))θ. Inserting u,

finally pins down the second constant,

ρC2 = (1 − θ)u1−α
C1 + (1 − θ)(1 − u)ϑC2

⇔
ρ

(1 − θ)ϑ
=

1

1 − α

(

ϑ

(1 − α)

)− 1

α

C
1

α

1 C
− 1

α

2 + 1 −

(

ϑ

(1 − α)

)− 1

α

C
1

α

1 C
− 1

α

2

⇔
ρ − (1 − θ)ϑ

(1 − θ)ϑ
=

α

1 − α

(

ϑ

(1 − α)

)− 1

α

C
1

α

1 C
− 1

α

2

⇔ C
1

α

2 =
α

1 − α

(

ϑ

(1 − α)

)− 1

α (1 − θ)ϑ

ρ − (1 − θ)ϑ
C

1

α

1

⇒ C2 =

(

αϑ

ρ − (1 − θ)ϑ

)α
1 − α

ϑ

(

θ

ρ + λ − (1 − γ)1−θλ

)θ

Observe that we solved not only for some balanced growth path, but for the whole transition

path for a parameter restriction.

To summarize, for α = θ we obtain

c(kt, ht) = c(kt) =
ρ + λ − (1 − γ)1−θλ

θ
kt (33)

u(kt, ht) = u =
ρ − (1 − θ)ϑ

αϑ
(34)

Hence, individuals relatively prefer more consumption (or less investment) but work the

same hours compared to the traditional model for α = θ. Note that this analytical solution

to the stochastic extension of the Lucas model is novel.

B Figures

B.1 A neoclassical growth model with disasters
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Figure 1: Policy functions and optimal jump in the neoclassical growth model (1)
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Notes: These figures show (a) the optimal policy functions deterministic (dashed) vs. stochastic (solid) in the neoclassical
growth model compared to the analytical benchmark solution (dotted), and (b) the optimal jump as a function of capital for
the calibration (α, θ, δ, λ, γ, ρ) = (0.5, 2.5, 0.05, 0.2, 0.1, 0.0178), which implies a constant saving rate.

Figure 2: Absolute and relative error compared to the analytical benchmark solution and to
the policy function of the last iteration
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Figure 3: Policy functions and optimal jump in the neoclassical growth model (2)
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Notes: These figures show (a) the optimal policy functions deterministic (dashed) vs. stochastic (solid) in the neoclassical
growth model compared to the analytical benchmark solution (dotted), and (b) the optimal jump as a function of capital for
the calibration (α, θ, δ, λ, γ, ρ) = (0.5, 0.5, 0.05, 0.2, 0.1, 0.0178), which implies a linear policy function.

Figure 4: Absolute and relative error compared to the analytical benchmark solution and to
the policy function of the last iteration

0 10 20 30 40 50 60 70 80

10
−15

10
−10

10
−5

ab
so

lu
te

 e
rr

or
 (l

og
 s

ca
le

)

capital
0 10 20 30 40 50 60 70 80

10
−15

10
−10

10
−5

re
la

tiv
e 

er
ro

r (
lo

g 
sc

al
e)

capital

0 10 20 30 40 50 60 70 80

10
−15

10
−10

10
−5

ab
so

lu
te

 c
ha

ng
e 

la
st

 it
er

at
io

n 
(lo

g 
sc

al
e)

capital
0 10 20 30 40 50 60 70 80

10
−15

10
−10

10
−5

re
la

tiv
e 

ch
an

ge
 la

st
 it

er
at

io
n 

(lo
g 

sc
al

e)

capital

(a) (b)

(c) (d)

27



Figure 5: Policy functions and optimal jump in the neoclassical growth model (3)
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Notes: These figures show (a) the optimal policy functions deterministic (dashed) vs. stochastic (solid) in the neoclassical
growth model (no analytical benchmark solution available), and (b) the optimal jump as a function of capital for the calibration
(α, θ, δ, λ, γ, ρ) = (0.5, 1, 0.05, 0.2, 0.1, 0.0178).

Figure 6: Absolute and relative error compared to the policy function of the last iteration
(no analytical errors available)
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B.2 Lucas’ model of endogenous growth with disasters
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Figure 7: Policy functions and optimal jump for consumption in the Lucas model (1)
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Notes: These figures show (a) the optimal policy functions deterministic (dashed) vs. stochastic (solid) in the Lucas model
compared to the analytical benchmark solution (dotted), and (b) the optimal jump as a function of physical capital and human
capital for the calibration (α, θ, ϑ, λ, γ, ρ) = (0.75, 0.75, 0.075, 0.2, 0.1, 0.03), which implies a linear policy plane.

Figure 8: Absolute and relative error compared to the analytical benchmark solution and to
the policy function of the last iteration
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Figure 9: Policy functions and optimal jump for hours in the Lucas model (1)
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Notes: These figures show (a) the optimal policy functions deterministic (dashed) vs. stochastic (solid) in the Lucas model
compared to the analytical benchmark solution (dotted), and (b) the optimal jump as a function of physical capital and human
capital for the calibration (α, θ, ϑ, λ, γ, ρ) = (0.75, 0.75, 0.075, 0.2, 0.1, 0.03), which implies a linear policy plane.

Figure 10: Absolute and relative error compared to the analytical benchmark solution and
to the policy function of the last iteration
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Figure 11: Policy functions and optimal jump for consumption in the Lucas model (2)
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Notes: These figures show (a) the optimal policy functions deterministic (dashed) vs. stochastic (solid) in the Lucas model (no
analytical benchmark solution available), and (b) the optimal jump as a function of physical capital and human capital for the
calibration (α, θ, ϑ, λ, γ, ρ) = (0.75, 1, 0.075, 0.2, 0.1, 0.03).

Figure 12: Absolute and relative error compared to the policy function of the last iteration
(no analytical errors available)

0

0.5

1

0

1

2

3

x 10
−4

10
−5

10
0

capitalhuman capital

ab
so

lu
te

 c
ha

ng
e 

la
st

 it
er

at
io

n 
co

ns
um

pt
io

n 
(lo

g 
sc

al
e)

0

0.5

1

0

1

2

3

x 10
−4

10
−5

10
0

capitalhuman capital

re
la

tiv
e 

ch
an

ge
 la

st
 it

er
at

io
n 

co
ns

um
pt

io
n 

(lo
g 

sc
al

e)(a) (b)

31



Figure 13: Policy functions and optimal jump for hours in the Lucas model (2)
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Notes: These figures show (a) the optimal policy functions deterministic (dashed) vs. stochastic (solid) in the Lucas model (no
analytical benchmark solution available), and (b) the optimal jump as a function of physical capital and human capital for the
calibration (α, θ, ϑ, λ, γ, ρ) = (0.75, 1, 0.075, 0.2, 0.1, 0.03).

Figure 14: Absolute and relative error compared to the policy function of the last iteration
(no analytical errors available)
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